

Разработка биоразлагаемых полимерных и композиционных материалов с регулируемыми характеристиками для производства медицинских имплантатов нового поколения и систем доставки лекарств

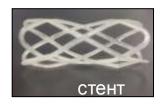
Григорьев Т.Е., Чвалун С.Н.

Актуальность

Полилактид:

$$HO \xrightarrow{O} O \xrightarrow{CH_3} O \xrightarrow{O} O \cap CH_3$$

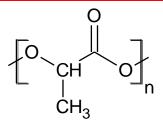
Сополимеры лактида с гликолидом:

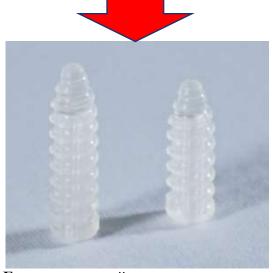

Основные характеристики:

- В зависимости от состава аморфные или частично кристалличные полимеры $T_{\rm g} = 40-60$ °C, $T_{\rm m} = 150-220$ °C;
- Биосовместимы;
- Разлагаются до CO_2 и воды;
- Регулируемые сроки биодеградации от 2 мес. до нескольких лет.

Биомедицинские применения:

- Шовные хирургические нити
- Винты, стержни и скобы для остеосинтеза
- Нетканые материалы для ожоговых и раневых повязок
- Скаффолды для регенеративной медицины
- Эндоваскулярные имплантаты
- Системы направленной доставки и пролонгированного высвобождения лекарств





Композиционные материалы на основе полилактида и ГАП

Полилактид

- •Возможность варьирования свойств для получения материала с нужными характеристиками;
- Разлагается до СО₂ и воды;
- •Температура стеклования: 60 °C;
- •Температура плавления: до 230 °C;

Биоразлагаемый винт из полилактида

Биоразлагаемый винт из композита полилактид-ГАП сочетает в себе высокие физикомеханические характеристики и биоактивные свойства

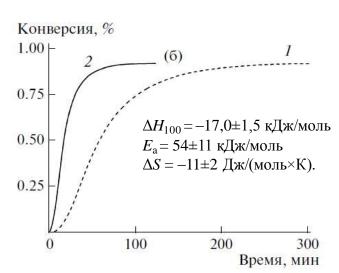
$Ca_{10}(PO_4)_6(OH)_2$ Гидроксиапатит (ГАП)

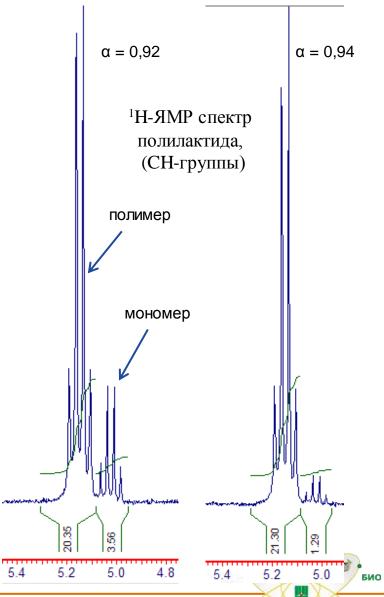
- •<u>Плюсы:</u>
- •Высокая биологическая совместимость;
- •Ускоряет рост, пролиферацию и дифференцировку остеобластов;
- •Высокая скорость биорезорбции
- •Минусы:
- •низкие физико-механические характеристики

Материал для замещения костных дефектов на основе ГАП

<u>Цель</u> - разработка биоразлагаемых наноструктурированных материалов и изделий на основе полилактонов с регулируемыми механическими характеристиками и сроками биодеградации

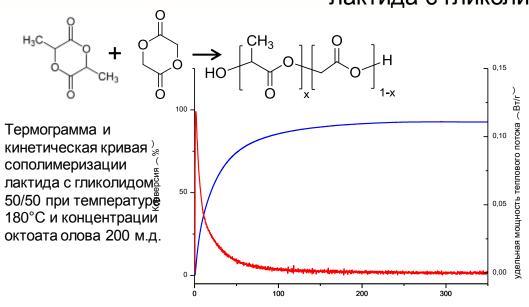
Новые биоразлагаемые крепежные изделия будут обладать следующими преимуществами по сравнению с аналогами:


- Регулируемые сроки биодеградации (6 18 мес).
- Улучшенные физико-механические характеристики.
- Улучшенная биосовместимость благодаря наполнителю, поддерживающему нейтральный рН среды.

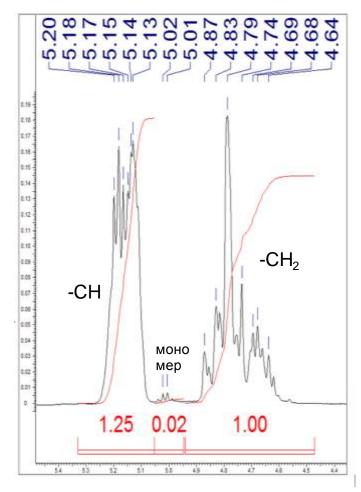

Исследование кинетики и термодинамических параметров полимеризации D,Lлактида при варьировании условий реакций

Кинетические кривые полимеризации D,L-лактида при концентрации катализатора 500 м.д.

Влияние условий реакции на кинетические параметры полимеризации D,L-лактида


Nº	Т _{реакции} , °C	С _{катализатора} , м.д.	Т _{полупревращения} , МИН	Т _{реакции} , мин	Конверсия, %
1	200	500	55	280	94
2	220	500	15	100	93
3	200	830	30	100	94
4	220	830	10	70	94

когно



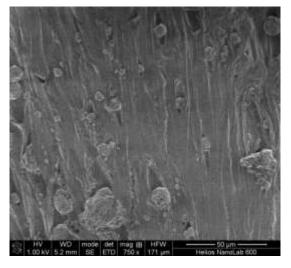
Исследование кинетики и термодинамических параметров сополимеризации лактида с гликолидом

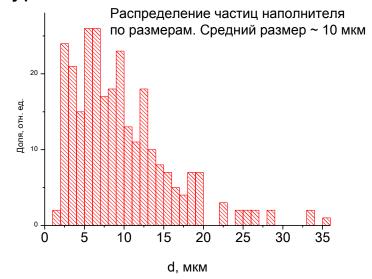
Влияние условий реакции на кинетические параметры сополимеризации D,L-лактида с гликолидом

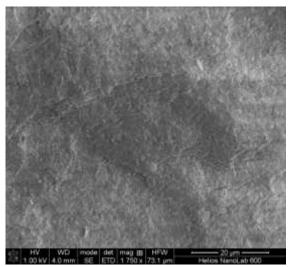
Соотношение мономеров (Л/Г)	Т _{реакции} , °С	С _{катализато} _{ра} , м.д.	Т _{полупревращен} ия, МИН	Т _{реакции} , мин	Энтальпия, Дж моль ⁻¹	Конверсия, %
50/50	180	200	45	260	17,4	92,7
75/25	160	500	55	470	18,7	99*
75/25	180	200	43	340	16	96
75/25	180	500	20	190	16,3	97,6*
75/25	200	200	30	290	16,6	99*
75/25	200	500	9	115	17,3	99*

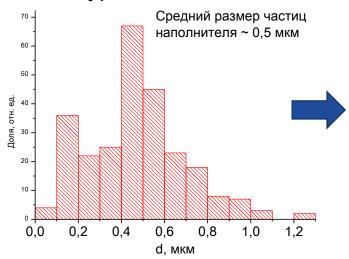
Фрагмент ¹Н-ЯМР спектра очищенного поли(D,L-лактид-со-гликолида) с заданным составом 75:25, фактический состав – 72:28

когно

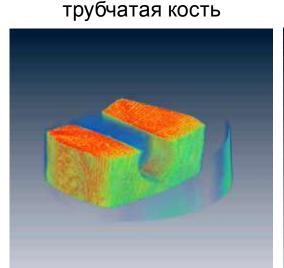

БИО


ОФНИ

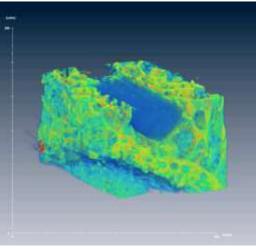

Диспергирование наполнителя


Материал композитного винта Arthrex – наполнитель диспергирован на микро-уровне:

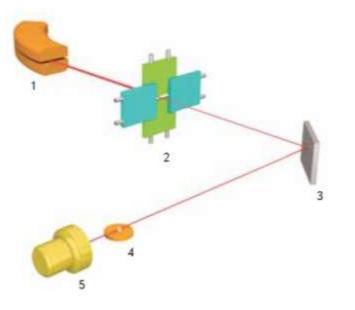
Разрабатываемый материал – наполнитель диспергирован на **субмикронном** уровне:


Модуль упругости (изгиб): до 6,3 ГПа

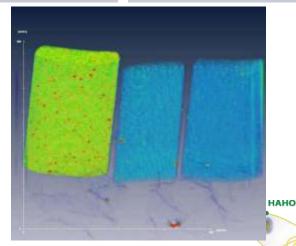
Прочность (изгиб): до 141 МПа


Структурные исследования образцов биоразлагаемых наноструктурированных крепежных изделий на основе полилактонов с применением источника синхротронного излучения

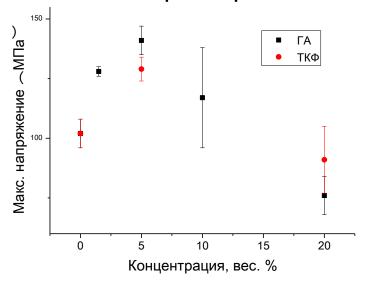
PLA + 5% ΓΑΠ

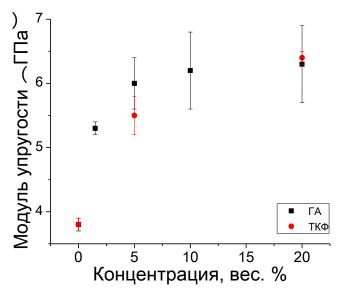

Образцы пинов были имплантированы в кость и визуализированы на станции РТ-МТ Курчатовского комплекса синхротронно-нейтронных исследований

губчатая кость



когно




Режим микротомографии на монохроматическом излучении

- 1 поворотный магнит;
- 2 колпимирующие щели;
- 3 кристапп-монохроматор;
- 4 образец на гониометре
- 5 двухкоординатный детектор.

Влияние типа и концентрации наполнителя на физико-механические характеристики композиционных материалов

Определение прочности изделия на изгиб

когно

БИО

Модуль упругости (изгиб): до 6,3 ГПа Прочность (изгиб): до 141 МПа

Исследование биосовместимости наполненных биоразлагаемых материалов

In vitro

Данные МТТ теста демонстрируют, что биоразлагаемые полимерные материалы в виде лент из поли(L-лактида), наполненные гидроксиапатитами в различных концентрациях, не обладают токсическим действием в тесте, выполненном методом прямого контакта по ГОСТ 10993-5-2011. При этом жизнеспособность клеток на наполненных материалах оказалась выше, чем на ненаполненном полилактиде

In vivo Средние значения гематологических показателей крови животных.

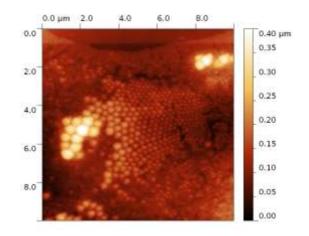
Группа	Лейкоц иты, Х 10 ⁹ \л	Эритроци ты, X 10 ¹² \л	Гемоглоб ин, г/л	Гематокр ит, %	Тромбоци ты, X 10 ⁹ \л	Лимфоци ты, X 10 ⁹ \л	Моноцит ы, X 10 ⁹ \л	Гранулоц иты, X 10 ⁹ \л
Контроль	21,1 ±2,5	7,2±0,3	134,2 ±2,8	41,1 ±0,8	668,4 ±58,4	13,2 ±1,32	1,0 ±0,2	6,9±1,5
Композитный материал	19,1 ±1,1	6,6±0,3	122,0 ±3,4	38,7 ±1,2	629,8 ±49,1	8,0±1,2	1,4±0,2	9,7±2,0

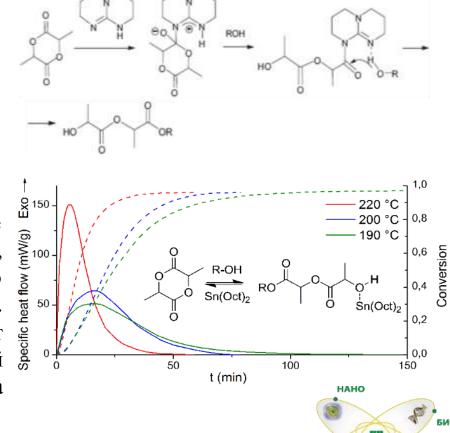
На основании проведенного гематологического исследования можно сделать вывод, что биоразлагаемые крепежные изделия на основе полилактида, наполненного гидроксиапатитом, не влияют на гематологические показатели и лейкоцитарную формулу крови животных.

когно

Изделия на основе композиционных материалов

Винт из композита полилактид-ГАП 6x20 мм


Винт из композита полилактид-ГАП 4х25 мм; инструмент для вкручивания



ПОЛИМЕРНЫЕ НАНОЧАСТИЦЫ

Разработаны новые активные функциональные катализаторы полимеризации полилактида и его сополимеров для создания нано- и микрочастиц как средств доставки биологически активных соединений

Разработаны новые функциональные катализаторы полимеризации лактонов, обеспечивающие получение полилактида и его сополимеров различных составов и свойств. Высокая активность катализаторов позволяет синтезировать (со)полилактиды с молекулярной массой до 130 000 Да и конверсией 95 % за время, не превышающее 2-х часов

когно

Спасибо за внимание!

