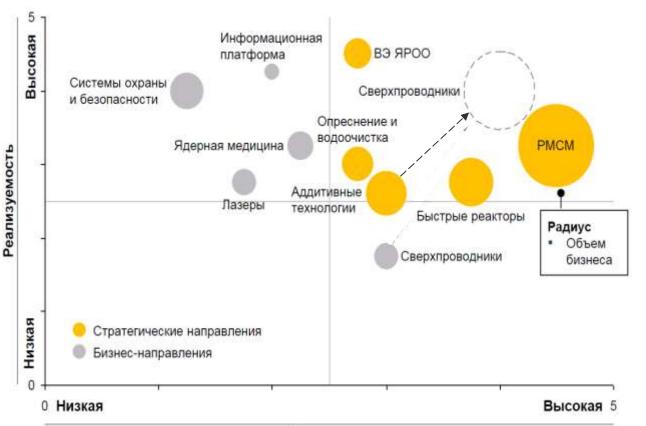


Технологическое и материаловедческое обеспечение создания цифрового производства

А.В. Дуб, В.В. Береговский, А.Н. Быков

NDExpo

г. Москва, 21.03.2017



Аддитивные технологии – стратегическое направление развития

Направление развития аддитивных технологий и производства входит в число перспективных стратегических направлений научно-технической деятельности Госкорпорации «Росатом»* и программы развития новых производственных

Выгодность

цели:

□ Материалы:

- металлические
- керамические;
- композиционные (многослойные, капсулированные);
- органические материалы для прямого аддитивного выращивания;
- материалы для PIM и MIM технологий.

□ Технология:

- автоматизированные аддитивные машины (3D принтеры);
- установки нанесения многослойных покрытий
- > технологии производства изделий

□ Услуги

- нормативная документация, базы данных по свойствам получаемых материалов и критических элементов изделий;
- цифровое проектирование, системы управления и контроля процессов и оборудования
- производство изделий методом аддитивных технологий

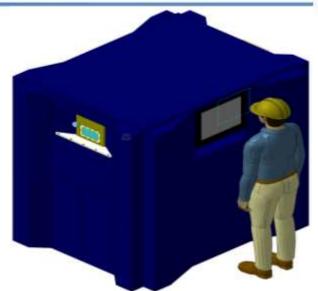
^{*}Стратегическое направление одобрено на заседании Стратегического комитета Госкорпорации "Росатом" 25.12.2015г.

^{**} Скоординированная программа исследований и разработок в интересах развития новых производственных технологий (СПИиР HПТ)

1. Типовой ряд оборудования: Melt Master^{3D}550

Разработана и создана установка послойного наращивания методом Селективного лазерного плавления.

При разработке конструкции головной производственной установки была использована горизонтальная модульная архитектура, что позволяет встраивать ее в технологическую цепочку цифрового производства.



Установка	SLM 500HL	EOS M400	X line 1000R	MeltMaster ^{3D} 550
Максимальные размеры области построения, мм	500×280×325	400×400×400	630×400×500	550×450×450
Лазер, кол-во, шт. / мощность, кВт / тип	2×0,4 (2×1,0) Иттербиевый волоконный	1 / 1 / Иттербиевый волоконный	1 / 1 / Иттербиевый волоконный	1 / 1 / Иттербиевый волоконный
Скорость построения, см³/ч	до 70	-	10-100	15-100
Толщина одного слоя, мкм	20-200	-	30-200	20-250

1. Типовой ряд оборудования: Melt Master^{3D}150

Установка Melt Master^{3D} 150 предназначена для изготавления малогабаритных сложнопрофильных изделия послойным выращиванием методом СЛП из порошков металлов и сплавов.

Установка	Melt Master ^{3D} 150	Farsoon FS121M	SLM 125	Concept Mlab cusing R
Скорость построения, см³/ч	1-25	1-5	1-25	1-5
Максимальные размеры области построения, мм	150x150x150	120x120x100	125х125х125мм	90х90х80мм
Мощность лазера/тип	200 Вт Волоконный лазер	200 Вт Волоконный лазер	400 Вт Волоконный лазер	100 Вт Волоконный лазер
Толщина слоя, мкм	20-50 мкм	20-80 мкм	20-75 мкм	20-50 мкм

1. Типовой ряд оборудования MeltMaster

Параметры\	АО "НПО "ЦНИИТМАШ"			
Наименование	MeltMaster3D-D75	MeltMaster3D-150	MeltMaster3D-300	MeltMaster3D-550
Размер камеры, мм	D75 x 80	150 x 150 x 150	300 x 300 x 300	550 x 450 x 450
Количество, мощность лазеров, шт. / кВт	1 / 0,2	1 / 0,2	1 / 0,5	1 / 0,5 2 / 0,5 + 1
Оптическая система	F-Theta, high-speed scanner	F-Theta, high- speed scanner	F-Theta / 3-axis optics	3-axis optics / 2 x F-Theta
Производительность, см3/ч				15-100
Размеры, ШхГхВ, мм	1200x2000x1800	1200x2000x1800	2600 x 1500 x 2000	3000x2050x2400
Применяемые материалы	нержавеющая и инструментальная сталь, алюминиевых, титановых сплавов, титана, инконелей, кобальт-хрома			тановых сплавов,
Стоимость базовой комплектации, руб.	13 000 000	17 000 000	33 000 000	59 700 000
Сроки поставки, месяцев	3-4	4-5	4-5	5-6

1. Основные характеристики установок SLM Solutions

Параметры∖		SLM Solutions	
Наименование	SLM 125 HL	SLM280	SLM500
Размер камеры, мм	125x125x75	280x280x365	500x280x365
Количество, мощность лазеров, шт. / кВт	0,1 / 0,2 Fiber Laser	1x0,4 (или 0,7), 2x0,4 (или 0,7), 1x0,4 + 1x1, 1x0,7 + 1x1	2x0,4 (или 2x0,7); 4x0,4 (или 4x0,7)
Оптическая система	3-axis optics	3-axis optics	3-axis optics
Производительность, см3/ч	25	55	105
Размеры, ШхГхВ, мм	1400x900x2460	2600x1200x2700	5200x2800x2700
Применяемые материалы	Titan, Aluminium, Kobalt Chrome, Inconel 625 und 718, Cu-Sn Bronze		
Стоимость базовой комплектации, руб.	> 20 000 000	> 40 000 000	> 88 340 000
Сроки поставки, месяцев		4-5	6-7

1. Основные характеристики установок EOS

Попомотры		EO	S	
Параметры∖ Наименование	PRECIOUS M 080	EOS M 100	EOS M 280 (EOS M 290)	EOS M 400 (EOS M 400-4)
Размер камеры, мм	D80 x 95	D100 x 95	250 x 250 x 325	400 x 400 x 400
Количество, мощность лазеров, шт. / кВт	1 / 0,1	1 / 0,2	1 / 0,2 или 1 / 0,4	1 / 1 4 / 0,4
Оптическая система	F-Theta, high-speed scanner	F-Theta, high- speed scanner	F-Theta, high-speed scanner	F-Theta/4xF-Theta, high-speed scanner
Производительность, см3/ч			30	100
Размеры, ШхГхВ, мм	800 x 950 x 2250	800 x 950 x 2250	2200 x 1070 x 2290 2500 x 1300 x 2190	4181 x 1613 x 2355
Применяемые материалы	Maraging Steel, Stainless Steel, Nickel Alloy, Cobalt Chrome, Titanium, Aluminium			
Стоимость, руб.				
Сроки поставки, месяцев				

1. Типовой ряд оборудования: поколение II

(Металлические аддитивные машины (М-АМ)

-32%

1.6

Продуктовые группы

Низкопроизводительные

20-60 млн.руб*

Однолучевые 3D принтеры с маломощным лазером (менее 400 Вт), малой зоной построения (не более 1 тыс. см3) и низкой скоростью построения (5-10 см3/ч и менее)

ы С Ой IC.

Источник: Roland Berger Strategy consulting Report 2014

РЫНОЧНЫЕ

ТЕНДЕНЦИИ

Снижение стоимость изготовления деталей на 3D принтерах, евро/см3

Соответствуют тенденциям 2014 года	2014	2018	2023
Скорость построения, см3/ч	10	40	80
Затраты энергии, евро/кг	89	70	30
Завершающая обработка, чел.час/кг	1,52	1,05	0,96
Стоимость изготовления детали, евро/см3	3,1	1,6	1,1

-49%

3.1

Соответствуют тенденциям 2018 года

Высокопроизводительные

65-120 млн.руб*

Многолучевые 3D принтеры (2-4 лазера) мощностью (0,4-2 кВт и более), большой зоной построения (более 25 тыс. см3 и скоростью построения более 20 см3/ч)

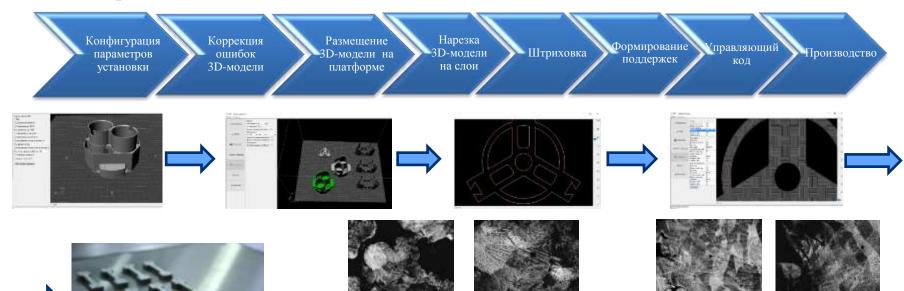
63 млн.руб

Разрабатываемый принтер будет обладать следующими характеристиками:

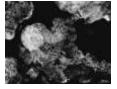
- многолучевой (2 луча, один оконтуривает деталь, второй плавит слой)
- мощные, высокопроизводительные лазеры (400 Вт и 1000 Вт)
- большая зона построения (80 тыс.см3)
- высокая скорость построения (более 43 см3/ч)
- Возможность использовать 2-х порошков при печати

Разрабатываемый 3D принтер:

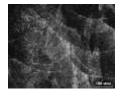
- □ относится к продуктовой группе высокопроизводительных М-АМ.
- □ полностью соответствует тенденциям по развитию продуктового направления на 2018 год


^{* -} стоимость 3D-принтеров в России с учетом транспортных расходов, таможенных сборов и других платежей

1. Типовой ряд оборудования: Melt Master^{3D}

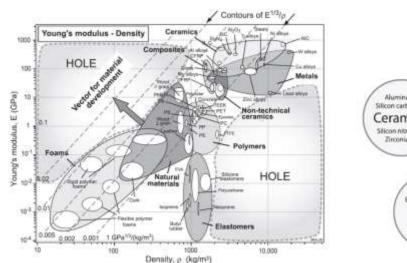

Разработан пакет оригинального специализированного ПО, включающего два программных продукта

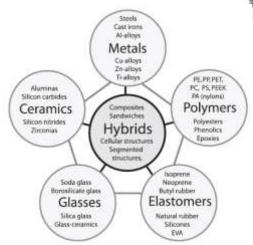
- «СЛП-Моделирование» блок 1-7
- «СЛП-Производство» блок 8

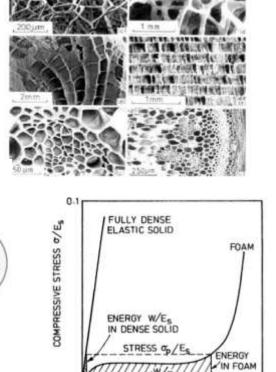


Экспериментальные образцы для проведения механических и микроструктурных исследований

Микроструктура образцов с макропорами (удельная энергия ЛИ 1,5 Дж/мм2)


Микроструктура образцов с порами (удельная энергия ЛИ 3,8 Дж/мм2)


Микроструктура образцов с микропорами (удельная энергия ЛИ 19 Дж/мм2)

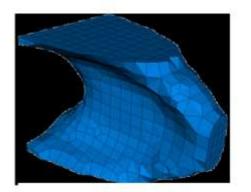

2. Основы конструирования: Ячеистые структуры

- Ячеистые структуры в природе и технике.
- Влияние структуры ячеистых материалов на их свойства (получение уникальных удельных свойств, по сути новый класс материалов *)

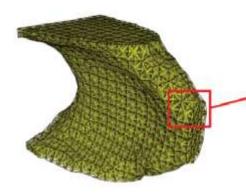
COMPRESSIVE STRAIN 6

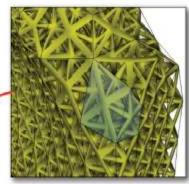
- * 1) L.J. Gibson, M.F. Ashby Cellular solids. Structure and properties //Second edition, Cambridge Solid State Science Series, Cambridge university press 1997. Pp 503.
 - 2) Ashby M. Designing architectured materials // Scripta Materialia 68 (2013) 4-7.
 - 3) Michell ADM (1904) The limits of economy of material in frame structures. Philos Mag 8:589-597.
 - 4) Гибсон Я., Розен Д., Стакер Б. Технологии аддитивного производства М.: Техносфера, 2016. С. 656

2. Основы конструирования: Топологическая оптимизация



Топологическая оптимизация - структурная оптимизация, когда итоговая форма конструкции наперёд неизвестна, а известны только условия, в которых конструкция должна работать, критерий оптимальности и


накладываемые ограничения.

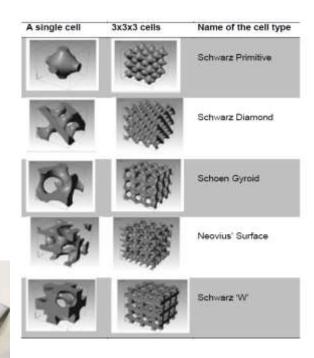


Кронштейны и теплообменники

Совмещение топологической оптимизации и заполнения ячеистыми структурами

2. Основы конструирования: Использование топологической оптимизации и ячеистых структур в аддитивном производстве

Предпосылки:


- Компенсация недостатков AT (низкая скорость изготовления, высокая стоимость материалов).
- Возможность изготовления деталей сложных форм и большие запасы прочности для многих деталей (в конструкциях эффективно работает только часть материала).
- Потребность в новых свойствах материалов (материалы с высокой поглощаемой энергией деформации, композитные материалы, высокие удельные свойства и др.).

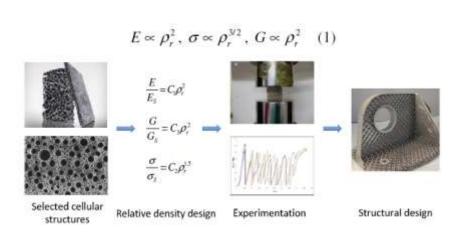
Использование в АТ:

- Топологическая оптимизация;
- Поддержки при изготовлении нависающих частей;
- Заполнение внутреннего объема деталей.

Примеры структур

2. Основы конструирования: «Разработка атласа типовых форм для топологической оптимизации конструкций, формируемых методом селективного лазерного плавления, и их производственная верификация»

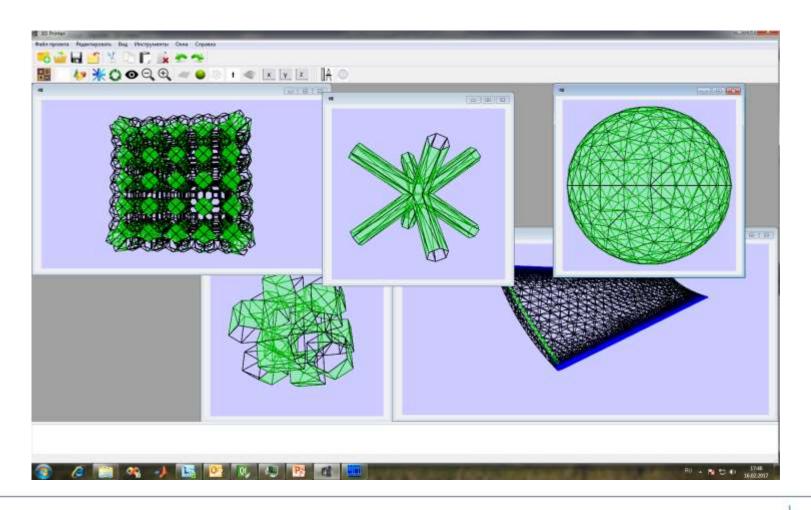
Цель: создание атласа типовых форм, программного обеспечения, расчётноэкспериментальные исследования свойств, научно-технический задел в области AT.


Участники:

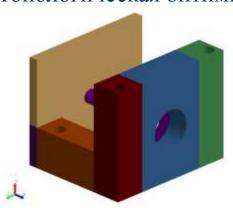
- «МИСиС» (испытание образцов, атлас типовых форм);
- ОАО «ЦНИИТМаш» (изготовление образцов);
- ФГУП «РФЯЦ-ВНИИЭФ» (программное обеспечение, расчёты);
- OAO «Наука и инновации» (промышленный партнер).

Финансирование:

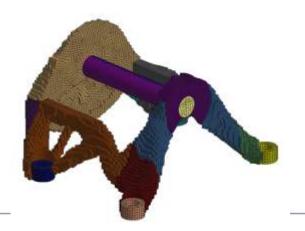
- Министерство образования и науки;
- ОАО «Наука и инновации».


Сроки: 2016 – 2018.

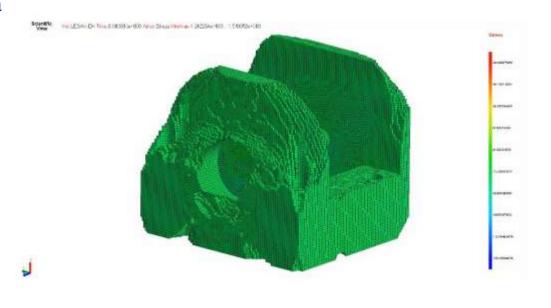
2. Основы конструирования: результаты работ


Создание программного обеспечения для генерации ячеистых структур и вписывания их в заданные детали, а также для проведения топологической оптимизации.

2. Основы конструирования: результаты работ

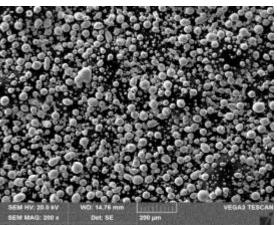


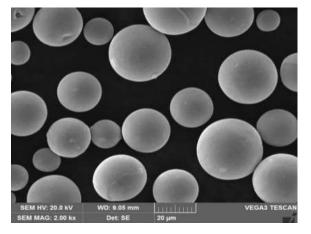
Топологическая оптимизация кронштейна с болтовым соединением (BESO метод)

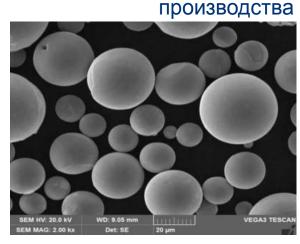


Снизу деталь жестко закреплена, а на боковые отверстия действует сила.

Количество элементов в начальной постановке 192144


Параметр	Описание	Значение
V/V ₀ , %	Отношение конечного объема к начальному	10
ER, %	коэффициент отношения объемов на шаге k и k+1	3
r _{min}	радиус чувствительности	3




3. Материал

На типовом оборудовании MeltMaster^{3D} можно использовать порошки коррозионностойкой стали, титана и его сплавов как отечественного, так и импортного

L5 = 35 μm

L6 = 35 μm

L8 = 35 μm

L8 = 35 μm

L8 = 35 μm

V6GAS TEDCAN

SEM MAG: 1.00 xx

SM: REBOLUTION

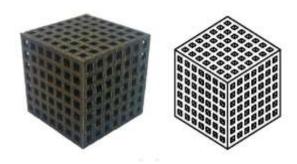
Порошок титана и его сплава, разработанный в АО «Гиредмет»

- Частицы порошка имеют округлую форму
- диапазон размеров 20 40 мкм

Импортный порошок стали SS 316L

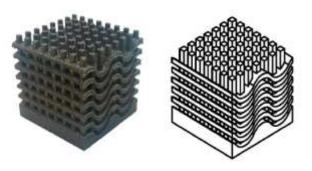
4. Технология, производство: Механические характеристики СЛП-образцов из коррозионностойкой стали 316L

Механически испытания показали, что образцы обладают прочностью сравнимой с литым материалом, но в то же время большим значением предела текучести и недостаточной пластичностью. Это объясняется высокими остаточными термонапряжениями, возникающие в следствии особенностей процесса СЛП и мелкоячеистой структурой образцов, как было показано ранее.

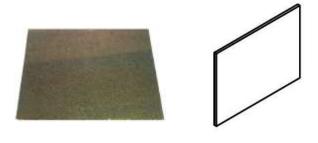

Тип обработки	σ _{0,2} , МПа	σ _в , ΜΠа	δ, %
	466±6	604±12	18,9±2
СЛП	461±6	601±6	16,8±2
	451±7	591±5	27,6±4
Литье	300	570	40

4. Технология, производство: Контрольные экспериментальные образцы из никелевых сплавов типа ХН45МВТЮБР (ЭП718) и ХН62ВМЮТ (ЭП708), полученные методом СЛП

ТКДБ.471340.02.00.002


Образец с упорядоченными ячеистыми структурами правильной формы

ТКДБ.471340.02.00.004


Образец имитирующий вал, с переходами диаметра

ТКДБ.471340.02.00.003

Образец с криволинейными элементами, и ячеистыми структурами сложной геометрической формы

ТКДБ.471340.02.00.005

Плоский образец для оценки шероховатости поверхности

4. Технология, производство: Шероховатость поверхности

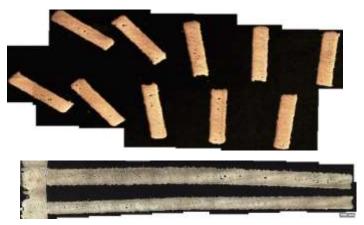
Значения параметра Ra поверхности образцов, полученных по различным технологическим режимам из ЭП 718

Значения параметра Ra поверхности образцов, полученных по различным технологическим режимам из ЭП 708

Режим	Плотность энергии лазерного излучения, Дж/м	Шероховатость Ra, мкм
1	342	8,56
A1	405	10,48
A2	244	17,98
B1	504	12,04
B2	303	19,34

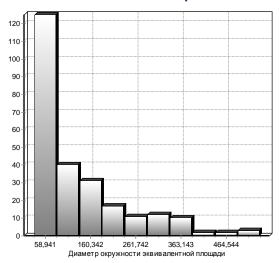
Режим	Плотность энергии лазерного излучения, Дж/м	Шероховатость Ra, мкм
1	430	15,87
A1	405	16,16
A2	304	24,87
B1	455	18,35
B2	342	23,48

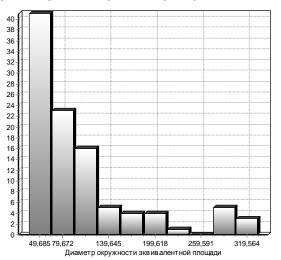
Оптимальным технологическим режимом селективного лазерного плавления сплава типа ЭП 718 является:

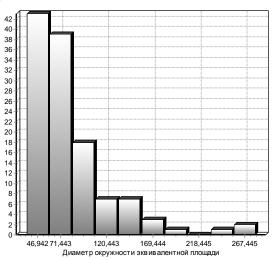

- ✓ мощность лазера 275 Вт
- ✓ скорость сканирования 605 мм/с
- ✓ интервал штриховки 120 мкм

- ✓ диаметр пятна лазера 81 мкм
- ✓ толщина слоя порошка 50 мкм
- ✓ шахматная стратегия сканирования

4. Технология, производство: Исследование влияния параметров лазерной обработки на пористость, форму и размер пор титана марки ВТ1-0




Панорама микрошлифа типа блиск турбины



Распределение пор по размерам при различных режимах СЛП

4. Технология, производство: Шероховатость поверхности

Значения параметра Ra поверхности образцов, полученных ПО различным технологическим режимам из ВТ1-0

Значения параметра Ra поверхности образцов, полученных по различным технологическим режимам из ВТ6.

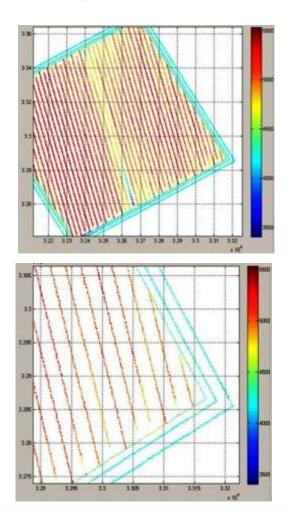
Режим	Плотность энергии лазерного излучения, Дж/мм	Шероховатость Ra, мкм
1	0,20	15,8
2	0,25	16,9
3	0,30	14,4
4	0,35	15,6
5	0,40	16,1

Режим	Плотность энергии лазерного излучения, Дж/мм	Шероховатость Ra, мкм
1	0,20	15,8
2	0,25	16,9
3	0,30	14,4
4	0,35	15,6
5	0,40	16,1

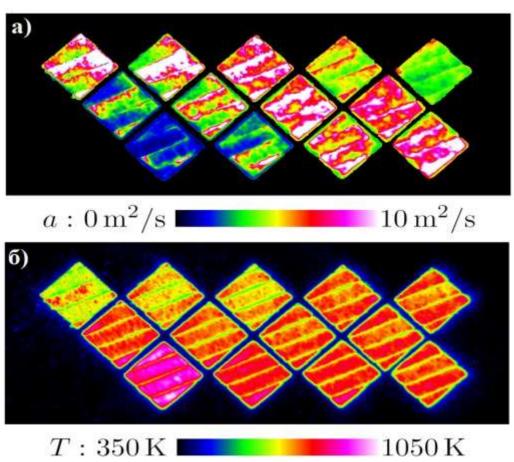
Оптимальным технологическим режимом селективного лазерного плавления сплава типа ВТ1-0 является:

- мощность лазера 175 Вт
- скорость сканирования 500 мм/с
- интервал штриховки 120 мкм
- диаметр пятна лазера 80 мкм
- толщина слоя порошка 50 мкм
- шахматная стратегия сканирования

Режим	Плотность энергии лазерного излучения, Дж/мм	Шероховатость Ra, мкм
1	0,20	15,2
2	0,25	15,6
3	0,30	14,0
4	0,35	16,5
5	0,40	14,5


Оптимальным технологическим режимом селективного лазерного плавления сплава типа ВТ6 является:

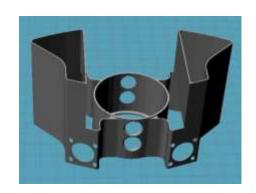
- мощность лазера 250 Вт
- скорость сканирования 625 мм/с
- интервал штриховки 120 мкм
- диаметр пятна лазера 80 мкм
- толщина слоя порошка 50 мкм
- шахматная стратегия сканирования


5. Методика контроля микроструктуры

Пример данных мониторинга температуры расплавленного трека

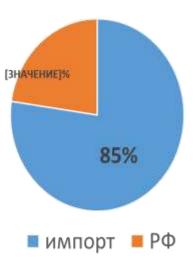
Коэффициент температуропроводности (а) и максимальная измеренная температура на поверхности (б) образцов

6. Цифровое производство: Реальности аддитивных технологий


Промышленный участок изготовления сложнопрофильных изделий методом селективного лазерного плавления оснащен оборудованием подготовки порошкового материала, промышленной установкой MeltMaster^{3D}-550, оборудованием для механической обработки изделий и контроля геометрии.

6. Цифровое производство: Создание высокотехнологического цифрового производства прецизионных изделий для медицинской отрасли на базе аддитивных технологий.

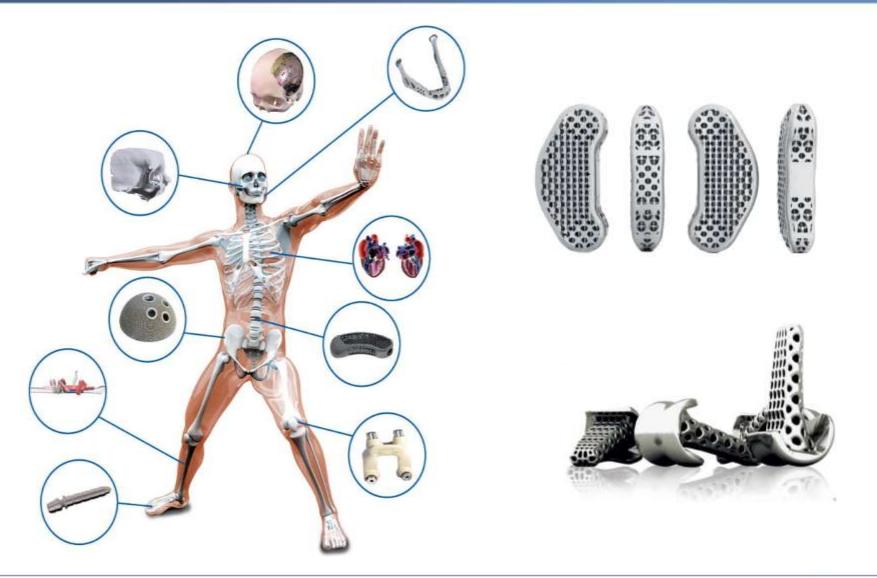
 Годовая потребность медицинских учреждений РФ в эндопротезах


до 100 000 комплектов

- Стоимость протеза более
- 80 тысяч рублей

Эндопротезирование в онкологии

- Стоимость
- от 350 до 750 тысяч рублей
- 95% отечественного рынка эндопротезов продукция зарубежных производителей


ADLB (AlloSource, США), Allograft (CeraMed, США), DBX (Synthes, страны Европы и США), SBM (Франция), Ламбон® (Pacific Coast Tissue Bank, США), Sulzer Medica (США) DePuy, Zimmer, Biomet, Stryker MARLE (Франция), Orchid, Simmetry Medical

	Рынок	
	Глобальный	РФ
2016	21 мирд. \$	6,7 maps, \$
рост	10%	

6. Цифровое производство: Примеры прецизионных изделий из титана, полученных методом аддитивных технолгий

